Linear Algebra I
18/12/2017, Monday, 15:00-17:00

You are NOT allowed to use any type of calculators.
$1 \quad(2+7+3+5+3=20 \mathrm{pts})$
Linear systems of equations

Consider the following linear system of equations in the unknowns x, y, and z :

$$
\begin{aligned}
& a x+y+z=1 \\
& x+a y+z=1 \\
& x+y+a z=1 .
\end{aligned}
$$

(a) Write down the augmented matrix.
(b) By performing elementary row operations, put the augmented matrix into row echelon form.
(c) Determine all values of a so that the system is inconsistent.
(d) Determine all values of a so that the system is consistent and find the solution set for such values of a.
(e) Determine all values of a so that the system has a unique solution.

2 (20 pts)
Determinants

Find all values of a, b, c, d, e, and f such that the matrix

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
a & b & b & b \\
a & c & d & d \\
a & c & e & f
\end{array}\right]
$$

is singular.

Let A and B be $n \times n$ matrices. Suppose that A is nonsingular.
(a) Show that the matrix

$$
M=\left[\begin{array}{ll}
A & B \\
B & A
\end{array}\right]
$$

is nonsingular if and only if the matrix $A-B A^{-1} B$ is nonsingular.
(b) Suppose that $A-B A^{-1} B$ is nonsingular and find the inverse of M.
$4(8+7+7+8=30 \mathrm{pts})$
(a) Let $E=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ be an ordered basis for the vector space V.
(i) Show that the vectors $\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}$ form a basis for V.
(ii) Find the transition matrix corresponding to the change of basis from $E=$ $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ to $F=\left(\boldsymbol{v}_{1}+\boldsymbol{v}_{2}, \boldsymbol{v}_{2}+\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{n-1}+\boldsymbol{v}_{n}, \boldsymbol{v}_{n}\right)$.
(b) Consider the vector space P_{4}. Let

$$
S=\left\{p \in P_{4} \mid p(1)=0 \text { and } p^{\prime}(1)=0\right\}
$$

where $p^{\prime}(x)$ denotes the derivative of $p(x)$.
(i) Show that S is a subspace.
(ii) Find a basis for S and determine its dimension.

10 pts free

